Arachidonic acid plays a role in rat vomeronasal signal transduction.
نویسندگان
چکیده
Sensory neurons of the vomeronasal organ (VNO) detect volatile chemicals that are released by conspecific animals and convey information about social and reproductive behavior. The signal transduction pathway in vomeronasal receptor neurons (VRNs) is not known in detail, but is believed to be distinct from that of the sensory neurons of the main olfactory system. Many of the identified olfactory transduction components are not expressed by VRNs. Using Ca2+ imaging and electrophysiological recordings, we investigated the signal transduction pathway of urine perception and the possible role of polyunsaturated fatty acids (PUFAs) as intracellular messengers in freshly dissociated rat VNO neurons. We found that application of urine induced a transient increase in intracellular Ca2+ that was dependent on the activity of phospholipase C and diacylglycerol (DAG) lipase. The Ca2+ transient was not dependent on depletion of intracellular Ca2+ stores but was dependent on the presence of extracellular Ca2+. Furthermore, the urine response was not sensitive to modulators of adenylate cyclase and inhibitors of inositol 1,4,5-trisphosphate receptors. Application of PUFAs (linolenic acid and arachidonic acid, synthesized in living cells from DAG) also elicited Ca2+ transients in fura 2 measurements and inward currents in whole-cell voltage-clamp recordings. Pharmacological inhibition of lipoxygenase and cyclooxygenase induced a transient increase in intracellular Ca2+, possibly by increasing the endogenous level of PUFAs, leading to activation of transduction channels. These data provide evidence for a role of PUFAs in rat vomeronasal signal transduction.
منابع مشابه
A Diacylglycerol-Gated Cation Channel in Vomeronasal Neuron Dendrites Is Impaired in TRPC2 Mutant Mice Mechanism of Pheromone Transduction
Vomeronasal sensory neurons play a crucial role in detecting pheromones, but the chemoelectrical transduction mechanism remains unclear and controversial. A major barrier to the resolution of this question has been the lack of an activation mechanism of a key transduction component, the TRPC2 channel. We have identified a Ca(2+)-permeable cation channel in vomeronasal neuron dendrites that is g...
متن کاملTRP2: a candidate transduction channel for mammalian pheromone sensory signaling.
The vomeronasal organ (VNO) of terrestrial vertebrates plays a key role in the detection of pheromones, chemicals released by animals that elicit stereotyped sexual and aggressive behaviors among conspecifics. Sensory transduction in the VNO appears unrelated to that in the vertebrate olfactory and visual systems: the putative pheromone receptors of the VNO are evolutionarily independent from t...
متن کاملVomeronasal sensory neurons from Sternotherus odoratus (stinkpot/musk turtle) respond to chemosignals via the phospholipase C system.
The mammalian signal transduction apparatus utilized by vomeronasal sensory neurons (VSNs) in the vomeronasal organ (VNO) has been richly explored, while that of reptiles, and in particular, the stinkpot or musk turtle Sternotherus odoratus, is less understood. Given that the turtle's well-known reproductive and mating behaviors are governed by chemical communication, 247 patch-clamp recordings...
متن کاملCalcium-activated chloride channels in the apical region of mouse vomeronasal sensory neurons
The rodent vomeronasal organ plays a crucial role in several social behaviors. Detection of pheromones or other emitted signaling molecules occurs in the dendritic microvilli of vomeronasal sensory neurons, where the binding of molecules to vomeronasal receptors leads to the influx of sodium and calcium ions mainly through the transient receptor potential canonical 2 (TRPC2) channel. To investi...
متن کاملOdors activate dual pathways, a TRPC2 and a AA-dependent pathway, in mouse vomeronasal neurons.
Located at the anterior portion of the nose, the paired vomeronasal organs (VNO) detect odors and pheromones. In vomeronasal sensory neurons (VSNs) odor responses are mainly mediated by phospholipase C (PLC), stimulation of which elevates diacylglycerol (DAG). DAG activates a transient receptor potential channel (TRPC2) leading to cell depolarization. In this study, we used a natural stimulus, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 22 19 شماره
صفحات -
تاریخ انتشار 2002